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Summary 

A Bayesian model is developed to estimate porosity, fluid 
saturation, and pore pressure in reservoirs using seismic and 
electromagnetic (EM) data. Within the Bayesian framework, 
unknown reservoir parameters at each pixel in space are 
considered as random variables and the co-located 
geophysical properties (seismic P- and S-wave velocity, 
density, and electrical conductivity), inverted from seismic 
and EM measurements, are considered as data. Rock-physics 
models are derived from borehole logs and are considered as 
random functions between the reservoir parameters and the 
geophysical properties. Using Markov chain Monte Carlo 
(MCMC) methods, many samples of each unknown variable 
are obtained from the Bayesian model, which subsequently 
are used to infer the unknown variable (reservoir parameter) 
as well as its uncertainty. A study, based on borehole data 
from a site in the Troll field, shows that the developed 
method is more effective for reservoir parameter estimation 
than traditional regression methods.  

Introduction 

Joint inversion of 2D or 3D seismic and EM data for 
reservoir parameter estimation is computationally expensive 
(Hoversten et al., 2005). One alternative to this inversion is a 
two-step process: (1) inverting seismic and EM data 
separately to produce seismic P- and S-wave velocity, 
density, and electrical conductivity, and (2) transforming the 
inverted data to reservoir properties using rock-physics 
models. Since the relationships between reservoir parameters 
and geophysical properties are non-unique and subject to 
uncertainty, traditional deterministic rock-physics models or 
regression methods are often ineffective and may lead to 
biases in reservoir parameter estimation. However, in recent 
years, efforts have been made to incorporate uncertainty into 
reservoir parameter estimation by using stochastic rock-
physics models.  

Avseth et al. (2001) developed an integrated method to map 
occurrence probabilities of different lithofacies and fluid 
properties from seismic amplitude variations with offset 
(AVO) data, for data collected from a North Sea site. They 
first defined seismic lithofacies and then used them as the 
link for tying fluid properties to seismic AVO data using 
statistical and rock-physics models. The success of the 
method relies heavily on the existence of seismic lithofacies 
and distinction in fluid properties among those facies. The 
method is site-specific and requires considerable geological, 
geophysical, and sedimentological information.  

Bachrach et al. (2004) presented a method for quantitative 
estimation of reservoir parameters (porosity, water saturation, 
and effective stress) using seismic data. They considered the 
reservoir estimation given seismic data (seismic P- and S-
wave velocity, density, or any function of the three variables) 
as a joint estimation problem within a Bayesian framework. 
The reservoir parameters in the Bayesian framework are 
considered as random variables, and the known geophysical 
attributes are considered as data. The rock-physics relations 
between the unknown reservoir parameters and the known 
geophysical data are used to define likelihood functions. The 
random variables, given data, likelihood functions, and other 
prior information together define a joint posterior probability 
distribution of all the unknown variables. The maximum a-
posterior probability (MAP) and traditional Monte Carlo 
methods are used to find marginal posterior probability 
distribution from the joint posterior distribution function. 
Although the framework described by Bachrach et al. (2004) 
is general, the approaches for finding solutions are limited to 
a small number of unknown variables. As described, they can 
only deal with two unknown variables. 

In this study, we generalize the method given by Bachrach et 
al. (2004) in the following ways: (1) we allow for 
simultaneous estimation of porosity, water saturation, gas or 
oil saturation, and pore pressure, (2) we incorporate EM as 
well as seismic data, and (3) we allow for the incorporation 
of various error distribution functions in the rock-physics 
models. The method can also incorporate spatial correlation 
and prior information of each unknown variable into the 
model. Most importantly, we use MCMC sampling methods 
to find solutions. This greatly enhances the generality of our 
developed methodology for reservoir parameter estimation. 

Method 

Bayesian Model 

We develop a Bayesian model to estimate porosity (φ ),

water saturation ( wS ), gas saturation ( gS ), and pore pressure 

(P) at each pixel in space, given the inverted, co-located 
seismic P- and S-wave velocity ( pV  and sV ), density ( ρ ),

and natural logarithmic electrical conductivity ( σ ). We first 
transform seismic P- and S-wave velocity and density to bulk 
and shear modulus, using equations given by Mavko et al. 
(1998). Therefore, our actual input data are bulk modulus 
( bk ), shear modulus ( sk ), density ( ρ ), and natural 

logarithmic electrical conductivity ( σ ). Based on Bayes’ 
theorem (Stone, 1996), the joint posterior distribution of 
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unknown variables at each pixel in space is given by the 
following formula: 

( , , , | , , , )
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The first term on the right side of Equation (1) is referred to 
as the likelihood function, which is the connection between 
the given data and the unknown variables. The second term is 
referred to as the prior distribution function, which is a 
summary of all the information not included in the data. 
Equation (1) holds up to an unknown normalizing constant, 
which is not needed for MCMC sampling methods. 

Likelihood Model

We can simplify the likelihood function in Equation (1), 
since bulk modulus, shear modulus, density, and electrical 
conductivity at each pixel are independent of one another. 
According to rock-physics theories (Mavko et al., 1998), bulk 
modulus and density are functions of porosity, fluid 
saturation, and pore pressure, whereas shear modulus is only 
a function of porosity and pore pressure. In addition, based 
on Archie’s law, electrical conductivity is a function of 
porosity and water saturation. Consequently, we can write the 
likelihood function in Equation (1) as the product of several 
likelihood functions given as follows: 
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We develop each individual likelihood function in Equation 
(2) by fitting bulk modulus, shear modulus, density, and 
logarithmic electrical conductivity as functions of porosity, 
fluid saturation, and pore pressure. The fitted models can be 
written as follows: 
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In Equation (3), 1g , 2g , 3g , and 4g  represent the fitted 

functions of bulk modulus, shear modulus, density, and 
logarithmic conductivity, respectively, and 1ε , 2ε , 3ε , and 

4ε  represent the residuals of the corresponding fitted 

functions. Each likelihood function is determined by the 
probability distribution function of its corresponding 
residuals. For example, if we assume that 4ε  has the 

Gaussian distribution with zero mean and standard 
deviation D , we can obtain the likelihood function of natural 
logarithmic electrical conductivity using the following: 
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Prior Model

We can simplify the prior distribution function in Equation 
(1) by assuming that porosity and pore pressure at each pixel 
in space are independent of each other, with both independent 
of water and gas saturation. The simplified prior distribution 
function is given by: 

( , , , ) ( ) ( ) ( , ).w g w gf S S P f f P f S Sφ φ=                            (5) 

We can use one of two approaches to determine the prior 
distribution functions of porosity and pore pressure. The first 
approach assumes that porosity and pore pressure at each 
pixel have uniform distributions over given ranges. The 
second approach assumes that porosity and pore pressure at 
each pixel are spatially correlated to their values at the 
adjacent pixels. Consequently, prior distribution functions of 
porosity and pore pressure at each pixel are the truncated 
Gaussian distribution, with mean and standard deviation 
determined by kriging methods.  

The prior distribution functions of water and gas saturation 
are determined jointly because they depend on each other at 
each pixel (since 1w gS S+ ≤ ). Let ( , )a b  and ( , )c d  be the 

ranges of water and gas saturation, respectively. We can thus 
assume that vector ( , )w gS S  is uniformly distributed on the 

intersection determined by the areas wa S b< < , gc S d< < ,

and 1w gS S+ ≤ . Note that water and gas saturation may not 

be uniformly distributed over the ranges of ( , )a b  and ( , )c d .

Sampling Method

We use MCMC sampling methods, similar to the ones 
presented by Chen and Hoversten (2003) and Chen et al. 
(2004), to obtain many samples of each unknown variable 
from the joint posterior distribution function given in 
Equation (1). The method entails three major steps: (1) 
deriving a full conditional distribution function for each 
variable, (2) drawing samples sequentially from those 
conditional distributions, and (3) making inferences from 
those samples.  

Synthetic Study 

We demonstrated the effectiveness of our method for 
reservoir parameter estimation using a synthetic dataset, 
generated according to data collected from a borehole at the 
Troll site in the North Sea. We first fitted the borehole data 
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with rock-physics models presented in Hoversten et al. 
(2003), and then generated synthetic bulk modulus, shear 
modulus, density, and electrical conductivity, using the rock- 
physics models (Table 1) and various reservoir logs. We 
added 10 percent relative Gaussian random noises to bulk 
modulus, shear modulus, and logarithmic conductivity, and 
30 percent relative random noise to density data. We divided 
the synthetic data into two subsets: one is referred to as the 
training data set (60% of the data); the other is referred to as 
the testing dataset (40% of the data).  

Table-1. Parameters of rock-physics models obtained by 
fitting borehole logs from a site in the Troll field, North Sea. 

Parameter name Fitted values 
Grain shear modulus (Gpa) 22.5 
Grain Poisson ratio 0.35 
Grain density (g/cm3) 2.567 
Number of contacts/grain 13.5 
Critical porosity 0.38 
Oil API gravity 28.5 
Gas gravity 0.59 
Brine salinity (ppm/106) 0.07 
Temperature (oC) 65 
Fluid conductivity (S/m) 1.2685 
Porosity exponent 1.3091 
Saturation exponent 0.1443 
Gas correction 0.99 

We first used regression methods to estimate reservoir 
parameters. We fitted porosity, water and gas saturation, and 
pressure as functions of bulk modulus, shear modulus, 
density, and electrical conductivity using the training data 
and stepwise deletion techniques (Stone, 1996). Next, we 
applied the fitted regression models to estimate reservoir 
parameters using the testing dataset. Finally, we compared 
the estimated results with their corresponding true values. 
Figure 1 shows the estimated mean values, true values, and 
95 percent confidence intervals of porosity, water saturation, 
and gas saturation. 

We also used our developed MCMC method to estimate 
reservoir parameters in the testing dataset. We first fitted bulk 
modulus, shear modulus, density, and natural logarithmic 
conductivity (see Equation 3) using rock-physics models 
given by Hoversten et al. (2003) and the training dataset. We 
analyzed the residuals of each fitting to get stochastic 
relationships between reservoir parameters and geophysical 
attributes. Using the method described in Section 2, we 
obtained posterior estimates of each unknown in the testing 
dataset. Figure 2 shows the means, true values, and 95 
percent predictive intervals of porosity, water saturation, and 
gas saturation.   

Conclusions 

The MCMC method is clearly more effective than the 
traditional regression methods for reservoir parameter 
estimation, based on our synthetic study. First, the mean 
estimates of porosity and water and gas saturation obtained 
from the MCMC method closely follow the corresponding 
true values. Second, the 95 percent predictive intervals 
obtained from the MCMC method give more reasonable 
upper and lower bounds for the estimated values. However, 
the regression methods significantly underestimate the 
uncertainty in reservoir parameter estimation. 

The MCMC method is theoretically more appealing than the 
traditional regression methods because the MCMC method
combines physical connections among reservoir parameters 
and geophysical properties, and avoids the potential conflict 
among various regression functions. In addition, the MCMC 
method is more flexible. For example, we can incorporate the 
spatial correlation of reservoir parameters into the estimation, 
as well as lower and upper bounds of reservoir parameters 
obtained from other sources of information. We can also 
combine some direct measurements of reservoir parameters at 
certain locations into reservoir parameter estimation.  
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Figure 1. The estimated means (blue line), true values (black line), and 95 percent confidence intervals (red lines) of
porosity, water saturation, and gas saturation for the testing dataset the using regression models. Note that the true values are
out of bounds at many locations. 
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Figure 2. The estimated means (blue line), true values (black line), and 95 percent predictive intervals (red lines) of porosity,
water saturation, and gas saturation for the testing dataset using the MCMC method.  
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